

US008851081B2

(12) United States Patent

Fernando et al.

(54) ELECTRICALLY HEATED SMOKING SYSTEM

(71) Applicant: **Philip Morris USA Inc.**, Richmond, VA

(US)

(72) Inventors: Felix Fernando, Berkshire (GB);

Fredrik Stahle, Vevey (CH); Jean-Pierre Cordey, Cheseaux (CH); Laurent Manca, Belmont-sur-Lausanne

(CH)

(73) Assignee: Philip Morris USA Inc., Richmond, VA

(US

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 13/841,197

(22) Filed: Mar. 15, 2013

(65) **Prior Publication Data**

US 2013/0206154 A1 Aug. 15, 2013

Related U.S. Application Data

(63) Continuation of application No. 12/425,622, filed on Apr. 17, 2009, now Pat. No. 8,402,976.

(30) Foreign Application Priority Data

Apr. 17, 2008 (EP) 08251450

(51) **Int. Cl.**

A24F 1/22 (2006.01)

A24F 47/00 (2006.01)

(52) U.S. Cl.

(10) **Patent No.:**

US 8,851,081 B2

(45) **Date of Patent:**

*Oct. 7, 2014

(58) Field of Classification Search

(56) References Cited

U.S. PATENT DOCUMENTS

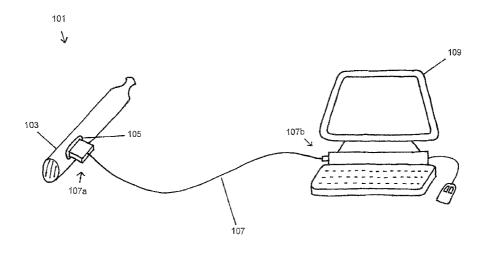
1,771,366 A 7/1930 Wyss et al. 1,968,509 A 7/1934 Tiffany (Continued)

FOREIGN PATENT DOCUMENTS

CA 1 202 378 3/1986 CN 87/104459 A 2/1988 (Continued)

OTHER PUBLICATIONS

"Microstructure of Alumina Brazed with a Silver-Cooper-Titanium Alloy" by M.L. Santella et al., published in J. Am. Ceram. Soc., 73(6):1785-1787 (1990).


(Continued)

Primary Examiner — Richard Crispino
Assistant Examiner — Dionne W Mayes
(74) Attorney, Agent, or Firm — Buchanan Ingersoll &
Rooney PC

(57) ABSTRACT

An electrically heated smoking system for receiving an aerosol-forming substrate. includes at least one heating element for heating the substrate to form an aerosol, a power supply for supplying power to the heating element, electrical hardware connected to the power supply and the heating element, and an interface for establishing a communications link with a host. The communications link may be a USB link and the host may be a personal computer.

8 Claims, 2 Drawing Sheets

US 8,851,081 B2 Page 2

(56)	F	Referen	ces Cited	4,874,924 4,877,989			Yamamoto et al. Drews et al.
	U.S. PA	TENT	DOCUMENTS	4,922,901			Brooks et al.
				4,945,931		8/1990	
2,057,353			Whittemore, Jr.	4,947,874 4,947,875			Brooks et al. Brooks et al.
2,104,266			McCormick	4,947,873			Serrano et al.
2,406,275 2,442,004	A I A		Wejnarth Hayward-Butt	4,981,522			Nichols et al.
2,971,039	A	2/1961	Western	4,991,606			Serrano et al.
2,974,669) A	3/1961	Ellis	5,016,656			McMurtrie
3,200,819		8/1965		5,040,551 5,040,552			Schlatter et al. Schleich et al.
3,255,760 3,258,015		6/1966	Ellis et al.	5,042,510			Curtiss et al.
3,280,819		0/1966		5,045,237			Washburn
3,363,633		1/1968		5,060,671			Counts et al.
3,402,723		9/1968		5,075,529 5,076,296		12/1991	Nystrom et al.
3,443,049 3,482,580			Hoagland Hollabaugh	5,080,115			Templeton
3,608,560			Briskin et al.	5,085,804			Washburn
3,738,374			Bennett	5,093,894			Deevi et al.
3,744,496			McCarty et al.	5,095,921 5,101,086			Losee et al. Dion et al.
3,804,100 3,875,476			Fariello Crandall et al.	5,139,594		8/1992	
3,889,690			Guarnieri	5,144,962			Counts et al.
3,895,219) A		Richerson et al.	5,157,242			Hetherington et al.
3,976,529			Weicjselbaum	5,159,940 5,179,966			Hayward et al. Losee et al.
4,016,061 4,068,672			Wasa et al. Guerra	5,188,130		2/1993	Hajaligol
4,077,784			Vayrynen	5,224,498	A	7/1993	Deevi et al.
4,098,725	5 A	7/1978	Yamamoto et al.	5,228,460		7/1993	1
4,103,144			Pizzarello	5,235,157 5,236,108		8/1993	Blackburn
4,110,260 4,131,119			Yamamoto et al. Blasutti	5,249,586			Morgan et al.
4,141,369			Burruss	5,261,424	A	11/1993	Sprinkel, Jr.
4,164,230) A	8/1979	Pearlman	5,268,553		12/1993	
4,193,411			Faris et al.	5,269,327 5,274,214			Counts et al. Blackburn
4,215,708 4,219,032		8/1980	Tabatznik et al.	5,285,050			Blackburn
4,246,913			Ogden et al.	5,322,075			Deevi et al.
4,256,945			Carter et al.	5,353,813			Deevi et al.
4,259,970			Green, Jr.	5,369,723 5,372,148		11/1994 12/1994	Counts et al. McCafferty et al.
4,303,083 4,319,591			Burruss, Jr. Keith et al.	5,388,574			Ingebrethsen
4,327,186			Murata et al.	5,388,594	A	2/1995	Counts et al.
4,355,222	2 A 1	0/1982	Geithman et al.	5,396,911		3/1995	
4,393,884		7/1983		5,408,574 5,469,871			Deevi et al. Barnes et al.
4,407,971 4,416,840			Komatsu et al. Lee et al.	5,479,948			Counts et al.
4,431,903		2/1984		5,498,855			Deevi et al.
4,436,100) A		Green, Jr.	5,499,636			Baggett et al.
4,449,039) A		Fukazawa et al.	5,505,214 5,514,630	A		Collins et al. Willkens et al.
4,463,247 4,467,165		8/1984 8/1984	Lawrence et al.	5,530,225		6/1996	Hajaligol
4,475,029			Yoshida et al.	5,591,368		1/1997	Fleischhauer et al.
4,488,335	5 A 1	2/1984	Fox	5,613,504			Collins et al. Campbell et al.
4,503,319			Moritoki et al.	5,613,505 5,665,262			Hajaligol
4,505,282 4,521,659			Cogbill et al. Buckley	5,666,977	A	9/1997	Higgins et al.
4,528,121			Matsushita et al.	5,666,978			Counts et al.
4,549,905			Yamaguchi et al.	5,708,258 5,750,964			Counts et al. Counts et al.
4,555,358 4,562,337			Matsushita et al. Lawrence	5,819,751			Barnes et al.
4,570,646		2/1986		5,819,756	A		Mielordt
4,572,216	5 A		Josuttis et al.	5,934,289			Watkins et al.
4,580,583			Greent, Jr.	6,040,560 6,155,268			Fleischhauer et al. Takeuchi
4,621,649 4,623,401	9 A Ι Ι Δ 1		Osterrath Derbyshire et al.	6,196,218		3/2001	
4,634,837			Ito et al.	6,446,426	B1	9/2002	Sweeney et al.
4,637,407	7 A	1/1987	Bonanno et al.	6,598,607		7/2003	Adiga et al.
4,659,912	2 A		Derbyshire	6,615,840 6,688,313			Fournier et al. Wrenn et al.
4,714,082 4,735,217			Banerjee et al. Gerth et al.	6,772,756			Shayan
4,765,859			Health et al.	6,803,545		10/2004	Blake et al.
4,771,796	5 A	9/1988	Myer	6,810,883	B2	11/2004	Felter et al.
4,776,353			Lilja et al.	6,854,470		2/2005	
4,789,767			Doljack	7,131,599 7,293,565		11/2006	Katase Griffin et al.
4,837,421 4,846,199		6/1989 7/1989		7,458,374			Hale et al.
4,848,376			Lilja et al.	7,690,385		4/2010	
.,,			<i>y</i>	, - ,			

(56)	Referei	nces Cited	GB	2 132 539	7/1984				
	U.S. PATENT	DOCUMENTS	GB GB	2 148 079 2 148 676	5/1985 5/1985				
# #24 220			JP JP	45-28471 61-68061	9/1970 4/1986				
7,726,320 7,832,410		Robinson et al. Hon	JР	64-17386	1/1989				
7,845,359	B2 12/2010	Montaser	JP	2-98301	4/1990				
7,997,280 8,079,371		Rosenthal Robinson et al.	JP JP	2-263773 2006-320286 <i>A</i>	10/1990 A 11/2006				
8,079,371 8,127,772		Montaser	KR	100636287 E	31 10/2006				
8,156,944	B2 4/2012	Han	SU SU	621141 864597	8/1978				
8,402,976 2002/0119873		Fernando et al 131/194 Heitmann	WO	WO 86/02528	9/1981 4/1986				
2003/0070555		Reyhanloo	WO	WO 94/06313	3/1994				
2004/0200488		Felter et al.	WO WO	WO 94/06314 WO 95/02970	3/1994 2/1995				
2005/0016550 2006/0112963		Katase Scott et al.	wo	WO 95/27411	10/1995				
2006/0118128	A1 6/2006	Hoffmann et al.	WO WO	WO 00/28843 A					
2006/0130860 2006/0196518		Cholet	WO	WO 03/095688 A WO 2004/043175 A					
2007/0074734		Braunshteyn et al.	WO	WO2004/080216	9/2004				
2007/0102013		Adams et al.	WO WO	WO2004/095955 WO2005/099494	11/2004 10/2005				
2008/0230052 2008/0276947		Montaser Martzel	wo	WO 2007/066374 A					
2009/0126745	A1 5/2009	Hon	WO WO	WO 2007/066167 A					
2009/0151717 2009/0188490		Bowen et al.	WO	WO 2007/078273 A WO 2007/131449 A					
2009/0133490		Fernando et al.	WO	WO 2007/131450 A	11/2007				
2009/0272379		Thorens et al.	WO WO	WO 2008/015441 A WO2008/055423	A1 2/2008 5/2008				
2010/0090644 2010/0163063		Nokkonen et al. Fernando et al.	wo	WO2010/091593	8/2010				
2010/0103003				OTHER I	PUBLICATION	NS			
2010/0313901		Fernando et al.							
2011/0094523 2011/0120482		Thorens et al. Brenneise		al., "Cyclic oxidation o	f Haynes 230 allo	oy", Chapman & Hall,			
2011/0126848		Zuber et al.		14-1520 (1992). ; "Thermal spray by de	sion" Renrint fr	om Advanced Materi-			
2011/0147486		Greim et al.	als & I	Processes Incorporating	g Metal Progress,	Oct. 1988.			
2011/0155151 2011/0155153		Newman et al. Thorens et al.		cterizing Thermal Spra					
2011/0155718		Greim et al.		made at the Fourth Nati 991 and appearing in A					
2011/0168194	A1 7/2011		1992, 1	op. 23-27.					
2011/0209717 2011/0309157		Han Yang et al.		s, Jr., "Computerized P y Coatings", Industrial					
2012/0090630				ka, "Processing of Int					
			Metall	Metallurgy and Processing Intermetallic Compounds, ed Stoloff et					
FC	DREIGN PATE	ENT DOCUMENTS	al., Van Mestrand Reinhold, N.Y., 1994. Brezovich, "Temperature Distributions in Tumor Models Heater,"						
CN	1 060 598 A	4/1992	Mar./Apr. 1984, pp. 145-152.						
CN	1530041 A	9/2004		chev, "Compensation o	of Varying Load i	in a Thyristor," v. 56,			
CN CN	1541577 A 2719043 Y	11/2004 8/2005		pp. 27-28. ri, "Rapid Reinforceme	ent for Fusion Mas	ss spliced Fibers using			
	201067079	6/2006	Low-P	ower," Jun. 1, 1985, pp	o. 1708-1712.				
	200966824	10/2007	Matthes, "Thyristorised Conerters for Inductive Heating for Hot Forging," 1975, pp. 80-86.						
DE DE	2 911 565 3 038 069 A1	9/1980 4/1982	_	Stauffer, "Observations on the Use of Ferromagnetic" 1984, pp.					
DE	243 784 A1	11/1987	76-90.						
DE DE	3 640 917 A1 3 711 234	8/1988 10/1988		Reinshagen and Sikka, "Thermal Spraying of Selected Aluminides", Proceedings of the Fourth National Thermal Spray Conference, Pitts-					
DE	3 735 704 A1	5/1989		burgh, PA USA, pp. 307-313 (May 4-10, 1991).					
DE EP	301 092 A7 0 438 862	1/1992 7/1982	-	nte, "A Design Proce		*			
EP	0 239 802 A2	10/1987		er," 1991, pp. 350-355.					
EP	0 277 519 A2	8/1988		he High-Frequency Ind Apr. 1992, pp. 39-42.	luctive Electric H	leater and its Applica-			
EP EP	0 295 122 A2 0 358 002 A2	12/1988 3/1990		ng of Ceramics" by R.E	. Loehman et al.,	published in Ceramic			
EP	0 358 114	3/1990		n, 67(d); 375-380 (198		15 5 5 7 7 1			
EP EP	0 378 997 0 430 566	4/1990 6/1991		ion Behavior of Silver- Silicon Nitride/Metal J					
EP	0 449 790 A2	10/1991		m. Ceram. Soc., 72(3):		ipoor et al., published			
EP EP	0 640 297 A 0 857 431 A1	1/1995 8/1998	"Brazi	ng Ceramic Oxides to	Metals at Low T				
EP	0 893 071 A1	1/1999		ond et al., published ir (1988).	n Welding Resear	rcn Supplement, 227-			
EP EP	1 226 765 A2	7/2002 8/2005		(1988). ng of Titanium-Vapoi	r-Coated Silicon	Nitride" by M. L.			
EP EP	1 559 332 A1 1 618 803 A1	8/2005 1/2006	Santell	a, published in Advan					
EP	1 736 062 A2	12/2006	(1988)						
EP GB	1 736 065 A1 1 298 808	12/2006 12/1972	* cited	d by examiner					
				J					

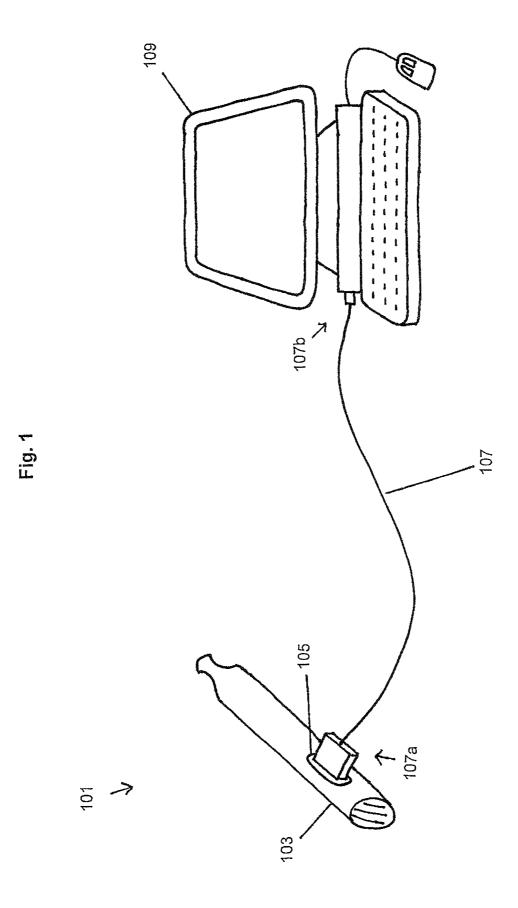
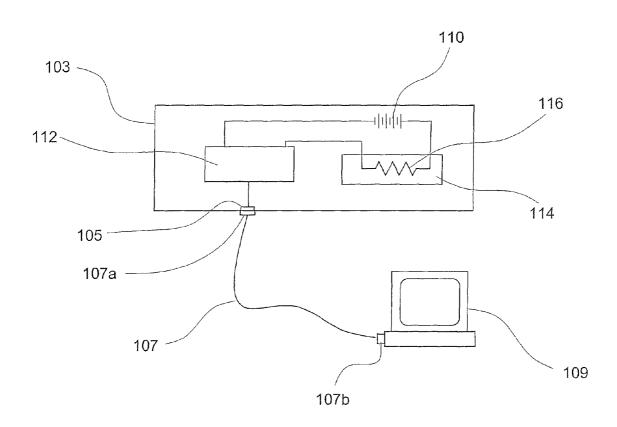



Fig. 2

ELECTRICALLY HEATED SMOKING SYSTEM

CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation under 35 U.S.C. §120 of U.S. patent application Ser. No. 12/425,622 filed on Apr. 17, 2009, and claiming priority under 35 U.S.C. §119 to European Patent Application No. 0 825 1450, filed Apr. 17, 2008, the entire contents of which are incorporated herein by this reference thereto.

BACKGROUND

The present invention relates generally to an electrically heated smoking system for receiving an aerosol-forming substrate.

A number of prior art documents, for example U.S. Pat. No. 5,060,671 (commonly owned, the entire contents of which 20 are included herein by this reference thereto), U.S. Pat. No. 5,388,594 (commonly owned, the entire contents of which are included herein by this reference thereto), U.S. Pat. No. 5,505,214 (commonly owned, the entire contents of which are included herein by this reference thereto), U.S. Pat. No. 25 5,591,368 (commonly owned, the entire contents of which are included herein by this reference thereto), WO2004/043175, EP 0 358 002, EP 0 295 122, EP 1 618 803, EP 1 736 065 and WO2007/131449, disclose electrically operated smoking systems, having a number of advantages. One 30 advantage is that electrically operated smoking systems significantly reduce sidestream smoke, while permitting the smoker to selectively suspend and reinitiate smoking.

Prior art documents, such as EP 0 295 122, EP 1 618 803 and EP 1 736 065, disclose electrical smoking systems which 35 use a liquid as the aerosol-forming substrate. The liquid may be contained in a cartridge which is receivable in a housing. A power supply, such as a battery, is provided, connected to a heater to heat the liquid substrate during a puff, to form the aerosol which is provided to the smoker.

The electrically heated smoking systems of the prior art, including those described above, typically provide a high power pulse to the heater to provide the temperature range desired for operation and to release the volatile compounds for each puff.

The electrically heated smoking systems of the prior art, including those described above, have certain advantages, but there is still room for improvement. It is therefore an object of the invention to provide an improved electrically heated smoking system which offers additional functionality to the 50 smoker.

SUMMARY OF CERTAIN ASPECTS OF THE INVENTION

According to a first aspect of the invention there is provided an electrically heated smoking system for receiving an aero-sol-forming substrate, the system comprising: at least one heating element for heating the substrate to form an aerosol; a power supply for supplying power to the at least one heating 60 element; electrical hardware connected to the power supply and the at least one heating element; and an interface for establishing a communications link with a host.

By providing an interface for establishing a communications link with a host, the electrical hardware in the system 65 itself can be relatively simple in terms of memory and processing power. This allows the electrically heated smoking 2

system to remain relatively low cost to manufacture. The interface for establishing the communications link with the host allows interaction between the system and the host. Thus, extended features can be implemented via the host at the same time as keeping the hardware in the system itself relatively simple.

The aerosol-forming substrate preferably comprises a tobacco-containing material containing volatile tobacco flavour compounds which are released from the substrate upon heating. Alternatively, the aerosol-forming substrate may comprise a non-tobacco material.

Preferably, the aerosol-forming substrate further comprises an aerosol former. Examples of suitable aerosol formers are glycerine and propylene glycol. Additional examples of potentially suitable aerosol formers are described in EP 0 277 519 and U.S. Pat. No. 5,396,911.

The aerosol-forming substrate may be a solid substrate. The solid substrate may comprise, for example, one or more of: powder, granules, pellets, shreds, spaghettis, strips or sheets, where such powder, granules, pellets, shreds, spaghettis, strips or sheets may further contain one or more of: herb leaf, tobacco leaf, fragments of tobacco ribs, reconstituted tobacco, homogenized tobacco, extruded tobacco, and expanded tobacco. The solid substrate may be in loose form, or may be provided in a suitable container or cartridge, such as, for example, shredded tobacco contained by a suitable wrapper. Optionally, the solid substrate may contain additional tobacco or non-tobacco volatile flavour compounds, to be released upon heating of the substrate.

Optionally, the solid substrate may be provided on or embedded in a thermally stable carrier. The carrier may take the form of powder, granules, pellets, shreds, spaghettis, strips or sheets. Alternatively, the carrier may be a tubular carrier having a thin layer of the solid substrate deposited on its inner surface, such as those disclosed in U.S. Pat. No. 5,505,214, U.S. Pat. No. 5,591,368 and U.S. Pat. No. 5,388, 594, or on its outer surface, or on both its inner and outer surfaces. Such a tubular carrier may be formed of, for example, a paper, or paper like material, a non-woven carbon fiber mat, a low mass open mesh metallic screen, or a perforated metallic foil or any other thermally stable polymer matrix.

The solid substrate may be deposited on the surface of the carrier in the form of, for example, a sheet, foam, gel or slurry. The solid substrate may be deposited on the entire surface of the carrier, or alternatively, may be deposited in a pattern in order to provide a non-uniform flavour delivery during use.

Alternatively, the carrier may be a non-woven fabric or fiber bundle into which tobacco components have been incorporated, such as that described in EP 0 857 431. The non-woven fabric or fiber bundle may comprise, for example, carbon fibers, natural cellulose fibers, or cellulose derivative fibers.

Alternatively, the carrier may be at least a part of the 55 heating element of the electrically heated smoking system. In such cases, the heating element is typically disposable. For example, the solid substrate may be deposited as a thin layer on a metallic foil or on an electrically resistive support as described in U.S. Pat. No. 5,060,671.

The aerosol-forming substrate may be a liquid substrate. If a liquid substrate is provided, the electrically heated smoking system preferably comprises means for retaining the liquid. For example, the liquid substrate may be retained in a container, such as that described in EP 0 893 071. Alternatively or in addition, the liquid substrate may be absorbed into a porous carrier material, as described in WO2007/066374, EP 1 736 062, WO2007/131449 and WO2007/131450. The porous car-

rier material may be made from any suitable absorbent plug or body, for example, a foamed metal or plastics material, polypropylene, terylene, nylon fibers or ceramic. The liquid substrate may be retained in the porous carrier material prior to use of the electrically heated smoking system or alternatively, the liquid substrate material may be released into the porous carrier material during, or immediately prior to use. For example, the liquid substrate may be provided in a capsule, as described in WO2007/077167. The shell of the capsule preferably melts upon heating and releases the liquid 10 substrate into the porous carrier material. The capsule may optionally contain a solid in combination with the liquid.

If the aerosol-forming substrate is a liquid substrate, the electrically heated smoking system may further comprise means for heating a small amount of liquid at a time. The 15 means for heating a small amount of liquid at a time may include, for example, a liquid passageway in communication with the liquid substrate, as described in EP 0 893 071. The liquid substrate is typically forced into the liquid passageway by capillary force. The heating element is preferably arranged 20 such that, during use, only the small amount of liquid substrate within the liquid passageway, and not the liquid within the container, is heated and volatilized.

Alternatively, or in addition, if the aerosol-forming substrate is a liquid substrate, the electrically heated smoking 25 system may further comprise an atomizer in contact with the liquid substrate source and including the at least one heating element. In addition to the heating element, the atomizer may include one or more electromechanical elements such as piezoelectric elements. Additionally or alternatively, the 30 atomizer may also include elements that use electrostatic, electromagnetic or pneumatic effects. The electrically heated smoking system may still further comprise a condensation

The aerosol-forming substrate may alternatively be any 35 other sort of substrate, for example, a gas substrate, or any combination of the various types of substrate. During operation, the substrate may be completely contained within the electrically heated smoking system. In that case, a user may tem. Alternatively, during operation, the substrate may be partially contained within the electrically heated smoking system. In that case, the substrate may form part of a separate article and the user may puff directly on the separate article.

The at least one heating element may comprise a single 45 heating element. Alternatively, the at least one heating element may comprise more than one heating element. The heating element or heating elements may be arranged appropriately so as to most effectively heat the aerosol-forming substrate.

The at least one heating element preferably comprises an electrically resistive material. Suitable electrically resistive materials include but are not limited to: semiconductors such as doped ceramics, electrically "conductive" ceramics (such as, for example, molybdenum disilicide), carbon, graphite, 55 metals, metal alloys and composite materials made of a ceramic material and a metallic material. Such composite materials may comprise doped or undoped ceramics. Examples of suitable doped ceramics include doped silicon carbides. Examples of suitable metals include titanium, zir- 60 conium, tantalum and metals from the platinum group. Examples of suitable metal alloys include stainless steel, nickel-, cobalt-, chromium-, aluminium-titanium-zirconium-, hafnium-, niobium-, molybdenum-, tantalum-, tungsten-, tin-, gallium-, manganese- and iron-containing alloys, 65 and super-alloys based on nickel, iron, cobalt, stainless steel, Timetal® and iron-manganese-aluminium based alloys. In

composite materials, the electrically resistive material may optionally be embedded in, encapsulated or coated with an insulating material or vice-versa, depending on the kinetics of energy transfer and the external physicochemical properties required. Examples of suitable composite heating elements are disclosed in U.S. Pat. No. 5,498,855 (commonly owned, the entire contents of which are included herein by this reference thereto), WO03/095688 and U.S. Pat. No. 5,514,630.

Alternatively, the at least one heating element may comprise an infra-red heating element, a photonic source such as, for example, those described in U.S. Pat. No. 5,934,289 (commonly owned, the entire contents of which are included herein by this reference thereto), or an inductive heating element, such as, for example, those described in U.S. Pat. No. 5,613,505 (commonly owned, the entire contents of which are included herein by this reference thereto).

The at least one heating element may take any suitable form. For example, the at least one heating element may take the form of a heating blade, such as those described in U.S. Pat. No. 5,388,594, U.S. Pat. No. 5,591,368 and U.S. Pat. No. 5,505,214. Alternatively, the at least one heating element may take the form of a casing or substrate having different electroconductive portions, as described in EP 1 128 741, or an electrically resistive metallic tube, as described in WO2007/ 066374. Where the aerosol-forming substrate is a liquid provided within a container, the container may incorporate a disposable heating element. Alternatively, one or more heating needles or rods that run through the centre of the aerosolforming substrate, as described in KR 100636287 and JP 2006320286, may also be suitable. Alternatively, the at least one heating element may be a disk (end) heater or a combination of a disk heater with heating needles or rods. Other alternatives include a heating wire or filament, for example a Ni-Cr, platinum, tungsten or alloy wire, such as those described in EP 1 736 065, or a heating plate. Optionally, the heating element may be deposited in or on a rigid carrier material.

The at least one heating element may comprise a heat sink, puff on a mouthpiece of the electrically heated smoking sys- 40 or heat reservoir comprising a material capable of absorbing and storing heat and subsequently releasing the heat over time to the aerosol-forming substrate. Suitable heat sinks are described in EP 0 857 431, US 2006/118128 and WO2008/ 015441. The heat sink may be formed of any suitable material, such as a suitable metal or ceramic material. Preferably, the material has a high heat capacity (sensible heat storage material), or is a material capable of absorbing and subsequently releasing heat via a reversible process, such as a high temperature phase change. Suitable sensible heat storage materials include silica gel, alumina, carbon, glass mat, glass fiber, minerals, a metal or alloy such as aluminium, silver or lead, and a cellulose material such as paper. Other suitable materials which release heat via a reversible phase change include paraffin, sodium acetate, naphthalene, wax, polyethylene oxide, a metal, metal salt, a mixture of eutectic salts or an alloy.

> The heat sink or heat reservoir may be arranged such that it is directly in contact with the aerosol-forming substrate and can transfer the stored heat directly to the substrate, as described in EP 0 857 431. Alternatively, the heat stored in the heat sink or heat reservoir may be transferred to the aerosolforming substrate by means of a heat conductor, such as a metallic tube, as described in WO2008/015441.

The at least one heating element may heat the aerosolforming substrate by means of conduction. The heating element may be at least partially in contact with the substrate, or the carrier on which the substrate is deposited. Alternatively,

the heat from the heating element may be conducted to the substrate by means of a heat conductive element.

Alternatively, the at least one heating element may transfer heat to the incoming ambient air that is drawn through the electrically heated smoking system during use, which in turn heats the aerosol-forming substrate by convection. The ambient air may be heated before passing through the aerosol-forming substrate, as described in WO2007/066374. Alternatively, if the aerosol-forming substrate is a liquid substrate, the ambient air may be first drawn through the substrate and then heated, as described in WO2007/078273.

In a first embodiment, the power supply for supplying power to the at least one heating element comprises a power cell contained in the electrically heated smoking system. In that case, the power supply may be a Lithium-ion battery or one of its variants, for example, a Lithium-ion polymer battery. Alternatively, the power supply may be a Nickel-metal hydride battery or a Nickel cadmium battery or a fuel cell. In that case, preferably, the electrically heated smoking system is usable by a smoker until the energy in the power cell is used up. Preferably, the power cell is entirely self-contained within the electrically heated smoking system.

In a second embodiment, the power supply for supplying power to the at least one heating element comprises circuitry 25 chargeable by an external charging portion. The external charging portion may form part of the electrically heated smoking system. For example, the electrically heated smoking system may comprise a portion to be held by a user, and the external charging portion. The external charging portion 30 may take the form of a docking station. Or, the external charging portion may form part of the host. In that case, the circuitry may be charged by connection of the electrically heated smoking system with the host via the communications link. In the second embodiment, preferably the circuitry, 35 when charged, provides power for a pre-determined number of puffs, after which the circuitry must be reconnected to the external charging portion. An example of suitable circuitry is one or more capacitors or re-chargeable batteries.

In a third embodiment, the power supply for supplying 40 power to the at least one heating element comprises an interface for connection to an external power source. Preferably, the interface is connected to the external power source at all times during use. In the third embodiment, the interface will preferably need to be connected to the external power source 45 whenever a smoker wishes to use the system, since there is preferably no power source in the system itself. In the third embodiment, the interface may be connected to the external power source by connection of the electrically heated smoking system with the host via the communications link. That is, 50 power may be supplied to the interface from the host, via the communications link.

Thus, in the context of the invention, the term "power supply" should be inferred to mean either a self-contained power cell, or chargeable circuitry, or an interface for connection to an external source or a combination of two or more of these

The communications link may be a wireless communications link. Alternatively, the communications link may be a wired communications link. The communications link may 60 be suitable for flow of data from the electrically heated smoking system to the host. The communications link may be suitable for flow of data from the host to the electrically heated smoking system. Preferably, the communications link is suitable for bi-directional flow of data, from the electrically 65 heated smoking system to the host and from the host to the electrically heated smoking system. Preferably, the communications link is suitable for bi-directional flow of data, from the electrically 65 heated smoking system. Preferably, the communications link may be a wireless communications link may be suitable for flow of data from the electrically heated smoking system. Preferably, the communications link may be suitable for bi-directional flow of data, from the electrically heated smoking system. Preferably, the communications link may be suitable for bi-directional flow of data, from the electrically 65 heated smoking system. Preferably, the communications link may be suitable for bi-directional flow of data, from the electrically 65 heated smoking system.

6

nications link is suitable for providing electrical power from the host to the electrically heated smoking system.

Preferably, the communications link operates under an interface standard. An interface standard is a standard that describes one or more functional characteristics, such as code conversion, line assignments, or protocol compliance, or physical characteristics, such as electrical, mechanical, or optical characteristics, necessary to allow the exchange of information between two or more systems or pieces of equipment. Examples of suitable interface standards for the communications link include, but are not limited to, the Recommended Standard 232 (RS-232) family of standards; Universal Serial Bus (USB); Bluetooth; FireWire (a brand name of Apple, Inc for their IEEE 1394 interface), IrDA (Infrared Data Association-a communications standard for the short-range exchange of data by Infrared light); Zigbee (a specification based on the IEEE 802.15.4 standard for wireless personal area networks) and other Wi-Fi standards.

In a preferred embodiment, the communications link is a Universal Serial Bus—USB—link. This is advantageous because a USB communications link provides bi-directional communication and also a power link (usually 5 V).

Preferably, the host is Internet-enabled. That is, preferably the host is able to connect to one or more Internet sites in order to upload data or download data or both upload and download data. This allows extended features to be implemented from the Internet via the host, at the same time as keeping the hardware in the system itself relatively simple. Throughout the specification, in the context of the present invention, the term "Internet" is used to refer to the worldwide, publicly accessible series of interconnected computer networks that transmit data using the standard Internet Protocol (IP). It includes the World Wide Web (www) but also includes other domestic, academic, business, government and other networks outside the World Wide Web.

The host may be a personal computer. The personal computer may be a desktop computer. The personal computer may be a laptop computer or a notebook computer. The personal computer may be a tablet computer such as a Personal Digital Assistant (PDA), a Personal Information Device (PID), a Portable Media Player (PMP, such as an Apple, Inc iPod®) or a Portable Video Player (PVP). The host may be a mobile cellular telephone.

The interface is an interface suitable for the particular communications link. For example, in the case of a wireless communications link, the interface may comprise one of: a receiver for receipt of wireless signals from the host; a transmitter for sending wireless signals to the host; and a transceiver for receiving wireless signals from, and sending wireless signals to, the host. For example, in the case of a wired communications link, the interface may comprise one or both of: a male connector for connection with a female connector on or connected to the host; and a female connector for connection with a male connector on or connected to the host;

The communications link is preferably suitable for one or more of the following functions: for downloading software from the host to the system; for downloading information from the host to the system; for charging the system; for uploading information from the system to the host; and for registering the system with the host. If the host is Internetenabled, those functions may take place whilst the host is accessing an Internet site, or separately from the host accessing an Internet site.

Preferably, the electrical hardware is programmable by software. The software may be downloadable from the host via the communications link.

Preferably the electrical hardware comprises a sensor to detect air flow indicative of a user taking a puff. The sensor may be an electro-mechanical device. Alternatively, the sensor may be any of: a mechanical device, an optical device, an opto-mechanical device and a micro electro-mechanical-systems (MEMS) based sensor. In that case, preferably the electrical hardware is arranged to provide an electric current pulse to the at least one heating element when the sensor senses a user taking a puff. Preferably the time-period of the electric current pulse is pre-set, depending on the amount of aerosol desired. The electrical hardware is preferably programmable for this purpose.

Alternatively, the electrical hardware may comprise a manually operable switch for a user to initiate a puff. In that case, preferably the electrical hardware is arranged to provide an electric current pulse to the at least one heating element when the user initiates a puff. Preferably, the time period of the electric current pulse is pre-set depending on the amount of aerosol desired. The electrical hardware is preferably programmable for this purpose.

The electrically heated smoking system may further comprise a puff indicator for indicating when the heating element is activated. In the embodiment in which the electrical hardware comprises a sensor to detect air flow indicative of a user taking a puff, the indicator may be activated when the sensor 25 senses air flow indicative of the user taking a puff. In the embodiment in which the electrical hardware comprises a manually operable switch, the indicator may be activated by the switch.

The electrically heated smoking system may further com- 30 prise a housing for receiving the aerosol-forming substrate and designed to be grasped by a user. The housing may comprise a shell and a replaceable mouthpiece.

BRIEF DESCRIPTION OF THE DRAWINGS

Many objects and advantages of the present invention will be apparent to those skilled in the art when this specification is read in conjunction with the appended drawings of an have been applied to like elements and wherein:

FIG. 1 depicts an embodiment of the electrically heated smoking system connected to a host via a USB link; and

FIG. 2 is a schematic illustration of the electrically heated smoking system of FIG. 1.

DETAILED DESCRIPTION OF THE PREFERRED **EMBODIMENT**

Referring to FIG. 1, in this embodiment, the electrically 50 heated smoking system in the form of device 101 comprises a housing 103 containing a power supply 110 (see FIG. 2) in the form, for example, of a Lithium-ion battery, electrically connected to electrical hardware 112 in the form, for example, of a printed circuit board. In addition, an aerosol-forming sub- 55 strate 114, which may be in the form of a tobacco plug may be contained in the housing 103. A heating element 116, which may be in the form of a heating blade, for example, in contact with the tobacco plug, may also be electrically connected with the power supply 110 and the electrical hardware 112. 60 The housing 103 may also include an interface 105, which may be in the form of a USB socket, for receiving a first end 107a of a communications link 107 that may be in the form of a USB connector. A second end 107b of the communications link 107 may be plugged into a host 109, that may be in the 65 form of Personal Computer (PC). The PC 109 is Internetenabled.

8

The hardware in the device 101 comprises a limited set of software-supporting components. This allows the device itself to remain relatively simple in terms of memory and processing power. Extended capabilities for the device (to be discussed below) are hosted on the Internet-enabled PC 109 and transferred to and from the device 101 as required. Thus, the device may be connected, via the PC 109, to one or more approved Internet sites. In this embodiment, the link is a USB link which provides bi-directional communication and can also provide power to the device.

A number of extended capabilities are possible, as follows: Firstly, software may be downloaded from the PC to the device. The software may include updated versions of software, as software develops, or to fix a specific bug. Alternatively, or in addition, the software may include additional features, which are, for example downloadable after payment by the user. This removes the need for the device to be returned to the supplier or manufacturer for software downloads. This capability is not limited to the device **101** and PC 20 109 of FIG. 1, but may apply to any electrically heated smoking system according to the invention.

Secondly, information may be downloaded from the PC to the device. For example, a user may personalize the device by specifying information such as a maximum number of puffs permitted per time period, and a minimum interval between puffs. This may assist with managing smoking behaviour. Alternatively, or in addition, the user may specify the brand of tobacco plug being used and control parameters can then be downloaded from the PC to the device, to optimize the smoking experience for that brand. Alternatively, or in addition, further features could be downloaded, for example auto-shutdown after a selected period of inactivity. This could be used as a security feature to prevent a lost or stolen device being used without authorisation. Again, this capability is not lim-35 ited to the device 101 and PC 109 of FIG. 1, but may apply to any electrically heated smoking system according to the invention. If the user specifies a brand, this will be the brand of the particular aerosol-forming substrate being used.

Thirdly, the PC may provide electrical power to the device. exemplary embodiment wherein like reference numerals 40 For example, if the device contains a rechargeable battery or other chargeable circuitry, the connection could be used to re-charge the battery or circuitry. This may be the case in the FIG. 1 embodiment. Or, if the device does not contain an internal power source, the PC may provide electrical power to 45 the device while the device is being used by a smoker. This will mean that it is necessary to have the device and PC connected, while the device is being used. This capability is not limited to the device 101 and PC 109 of FIG. 1, but may apply to any electrically heated smoking system according to the invention.

> Fourthly, information may be uploaded from the device to the PC. For example, for acquiring smoking behaviour information during clinical trials, the user can simply connect the device to the PC to upload data. This would automate much of the data collection and analysis, speeding up the process whilst minimising the data errors that are inherent in manual systems. Or, for assistance with managing smoking behaviour, the user could upload smoking behaviour information, to track the data and note improvements. Again, this capability is not limited to the device 101 and PC 109 of FIG. 1, but may apply to any electrically heated smoking system according to the invention.

> Fifthly, the connection could be used for a user to register the device with an Internet application supported on the PC. For example, this could be used as a security feature if the device is supplied by post, so that the device is only enabled after registration. This capability is not limited to the device

101 and PC 109 of FIG. 1, but may apply to any electrically heated smoking system according to the invention.

Other possible capabilities include, but are not limited to:
Pay-as-you-smoke functionality. For example the user
buys daily or weekly or monthly smoking time from the
Internet application supported on the PC, or the user
obtains smoking time credits based on cigarettes and
other smoking articles bought via the Internet application

The device could be pre-loaded with credit which could be 10 used to buy items, such as smoking articles, from the Internet application.

The Internet application hosted on the PC could be an approved support group Internet site for assistance with smoking cessation. The Internet application could offer 15 a controlled amount of smoking time whilst monitoring the smoking behaviour.

If the device operates with separate smoking articles, the Internet application could recommend the most suitable smoking articles for the device, when the device is connected to the PC. Or similarly, for any type of aerosol-forming substrate, the Internet application could recommend the most suitable brands for the device.

If the device operates with separate smoking articles, the Internet application could monitor usage and automati- 25 cally pre-order additional smoking articles when required. Or similarly, for any type of aerosol-forming substrate, the Internet application could monitor usage and pre-order aerosol-forming substrate when appropriate.

The Internet application could monitor usage of the device and recommend maintenance at appropriate junctures.

The device could include additional functionality, such as an MP3 player, satellite navigation and so forth, which could be downloaded to the device from the PC.

Clearly, these capabilities are not limited to the device 101 and PC 109 of FIG. 1, but may apply to any electrically heated smoking system according to the invention.

Thus, a large number of extended capabilities may be provided, not limited to those listed above. The interface for 40 connection via a communications link to the host, allows the electrically heated smoking system itself to be kept relatively simple and low-cost to manufacture, whilst providing capability for advanced functionality via the communications link

The summary, abstract, and other parts of this specification are intended to be illustrative, but not limiting. Accordingly, it is intended that all parts of this specification should be taken as a whole and not interpreted in any way to limit the breadth or generality of other parts of this specification.

It will be apparent to those skilled in the art that various modifications, variations, substitutions, and equivalents exist

10

for various features described herein which do not depart from the spirit and scope of the invention. Accordingly, it is expressly intended that all such modifications, variations, substitutions, and equivalents which fall within the spirit and scope of the invention as defined by the appended claims be embraced thereby.

What is claimed is:

- 1. An electrically heated smoking system for receiving an aerosol-forming substrate, the system comprising:
 - a substrate:
 - at least one heating element for heating the substrate to form an aerosol;
 - a power supply connected to the at least one heating element and operable to supply power thereto;
 - programmable electrical hardware connected to the power supply and the at least one heating element, the electrical hardware being configured to communicate over a bidirectional communications link with a remote host and control the at least one heating element in heating the substrate based on the control parameters received over the communications link.
- 2. The electrically heated smoking system according to claim 1, comprising:
 - an interface configured to establish the communications link between the electrical hardware and a remote host.
- 3. The electrically heated smoking system according to claim 2, wherein the interface is configured to establish at least one of a wired or wireless link between the electrical hardware and the remote host.
- **4**. The electrically heated smoking system according to claim **1**, wherein based on the received control parameters, the electrical hardware is configured to automatically shutdown after a selected period of inactivity.
- **5**. The electrically heated smoking system according to claim **1**, wherein based on the received control parameters, the electrical hardware is configured to permit a maximum number of puffs per time period.
- **6**. The electrically heated smoking system according to claim **1**, wherein based on the received control parameters, the electrical hardware is configured to provide a minimum interval between puffs.
- 7. The electrically heated smoking system according to claim 1, wherein the electrical hardware is configured to store smoking behavior information associated with controlling the at least one heating element to heat the substrate.
- **8**. The electrically heated smoking system according to claim **1**, wherein the electrical hardware is configured to control the power supply based on the control parameters received over the communications link.

* * * * *